Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows.
نویسنده
چکیده
Many studies in the last decade have revealed that patterns at the microscale can reduce skin drag. Yet, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model turbulent flow over patterned surfaces. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Kármán) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.
منابع مشابه
شبیهسازی عددی جریان آشفته کانال نیمموج با سطوح آبدوست و آبگریز
In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملReduction of friction in fluid transport: experimental investigation
Drag reduction (DR) by the use of polymer and surfactant solutions is by far the most effective drag-reducing technique for turbulent flows (up to 8-fold reduction in friction coefficients is possible on straight pipes). From a fundamental point of view, the study of the DR phenomenon offers an opportunity for a better understanding of turbulence in general; from a practical point of view, DR c...
متن کاملEffective hydrodynamic boundary conditions for microtextured surfaces.
Understanding the influence of topographic heterogeneities on liquid flows has become an important issue with the development of microfluidic systems, and more generally for the manipulation of liquids at the small scale. Most studies of the boundary flow past such surfaces have concerned poorly wetting liquids for which the topography acts to generate superhydrophobic slip. Here we focus on to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2014